29
2022-12
低压真空渗碳热处理新工艺 让航空发动机轴承更强韧
航空发动机的起动系统、燃油系统、滑油系统、液压系统等主要附件都是由发动机转子通过齿轮传动装置带动的。渗碳热处理工艺,是大幅度提高机械零件表面硬度、疲劳强度、磨损强度的关键技术之一,被广泛应用于齿轮、传动轴、轴承等关键构件的表面硬化处理,对高端机械的升级换代和质量提升起着重要作用。而目前我国金属渗碳热处理存在的最突出问题是表面质量不过关,环保压力较大。国外虽然有先进的装备和技术可以解决上述问题,但价格高昂,技术保密。国内16000家左右的热处理企业中,大多数无法负担高昂的进口装备成本。因此,尽早让国内企业都用得起这种装备,成为王昊杰创业团队的研发目标。攻读博士的第一年,王昊杰就在导师王昭东教授的指导下,开展了对低压真空渗碳成套装备的系统研究。他走访了全国大部分正在使用这一设备的工厂和正在研发这一设备的公司。不久,王昊杰开始与企业合作进行生产装配。为实现自己制定的工艺,王昊杰在摸索中屡败屡战。只要想到产品研发出来后可以帮助企业解决产品问题,他就干劲十足。在他和加工企业的共同努力下,纯国产低压真空渗碳热处理成套装备成功问世。三年多的研发过程,使王昊杰和国内大部分制造真空炉的企业有了交集,很多企业都高薪聘请他做技术顾问,甚至提出给与他股份、邀请他加盟,其中一家上市公司提出以1000万的价格买断他研发的新型热处理技术。王昊杰在与企业合作中发现,自己对合作企业的制造质量无法控制。于是他萌生了自己创业把控产品质量,将自己研发的产品打造成国内低压真空渗碳第一品牌的想法。2017年6月,王昊杰创立了沈阳东博热工科技有限公司,围绕热处理行业绿色发展,开发低压真空渗碳成套装备。在之前四五年的技术研究和积累基础上,王昊杰和团队先后开发出航发轴承和齿轮、机器人RV减速器摆线轮、高铁用高端密封件卡套等关键部件的热处理工艺开发的热处理工艺,打破国外严格的技术封锁,使这些国外垄断产品目前都实现了国内自主制造,并大幅降低了成本。截至2018年底,王昊杰的团队已经完成3000多万的产值。目前,王昊杰团队已经和航发沈阳黎明、航发哈尔滨轴承有限公司签订了协议,又和航发东安发动机、中车等单位达成了合作意向,将通过低压真空渗碳技术突破推动第二、第三代航空发动机轴承、齿轮渗碳钢的市场化批量生产。与此同时,王昊杰的企业还在积极开展真空氮化、梯度热处理等新技术的研究,以实现企业的良性可持续发展。​
29
2022-12
浅谈真空渗碳
​真空渗碳也是渗碳的一种,只是设备的表现形式不同,当然,工艺也有很大不同。真空渗碳按淬火方式不同,分真空渗碳油淬炉和真空渗碳气淬炉。从外观上说真空渗碳油淬炉和真空油淬炉相似,真空渗碳气淬炉和真空高压气淬炉相似。在增加渗碳功能以后,多了供气系统,气体流量控制系统,渗碳压力控制系统以及对加热系统的更改,这些系统的增加和更改,大部分是在设备内部,所以真空渗碳炉和真空炉的外形没有太大的区别。真空渗碳炉的规格主要有644、755、966、1077、1288,以及更大的1500*1500*800mm等标准型号,对应装炉量150kg,300kg,500kg,750kg,1000kg,4000kg。基本上以双室油淬炉为基础上都可以作为真空渗碳炉的生产平台。低压真空渗碳是在低于一个大气压条件下的气体渗碳。渗碳的压力一般在200-2000pa,实际应用最多的是200-500pa。低压真空渗碳采用的是脉冲式工艺模式,因此在工艺过程中渗碳介质是高纯乙炔,扩散介质采用用高纯氮气。低压真空渗碳零件具有真空热处理的普遍优点,相比于普通渗碳零件具有更多的以下优点:表面质量好: 真空渗碳表面不氧化、不脱碳,可保持金属本色; 不产生内氧(黑色组织),有助于提高零件的疲劳强度; 能极大产品的可靠性和使用寿命。 真空渗碳,不会与氧接触,所以有氧产生的缺陷在真空渗碳中全部避免。2.可处理形状复杂的零件,工件变形小:真空渗碳工件加热时,加热的速度连续可控,可减小工件的内外温差,变形小;渗碳完成后,淬火方式为真空淬火,大幅减小工件的淬火变形;减小后期的加工量,节省加工成本。适当减慢升温速度,可有效减小工件变形。真空渗碳炉加热时升温速度可控,可根据工件复杂性调节升温速度。3.渗碳层深度更均匀:工件加热完成匀温之后,才通入渗碳气体,保证了大小工件起始渗碳点的同步性,这是渗碳层均匀的基础。而常规气体渗碳和多用炉难以保证这一点。真空对工件表面有净化作用,有利于碳原子被工件吸附。常规渗碳和多用炉渗碳,在排气时,赶气和碳势建立没有明显的界限,小件先到温,先开始渗碳,大小件渗碳起始点不同。低压真空渗碳的渗碳起始点是一致的,先加热到温,所有工件到温并匀温后,开始通乙炔渗碳,所以大小渗碳零件的渗碳层均匀性是一致的。4.表面碳含量易于控制:真空渗碳表面碳含量不必通过碳势控制,通过控制渗碳压力和渗碳气流量即可实现表面碳含量的精确控制。真空渗碳的原理已经和传统气体渗碳不同,没有了碳势的概念。5.渗碳温度范围跨度大:从低温渗碳到最高渗碳温度可达到1050℃,对于深层渗碳可大大节省工艺时间。更有利于完成特殊钢种的渗碳工艺。 在880-1000℃范围内的相同材料低压真空渗碳,随着渗碳温度的提高,渗碳速度不断增加。980℃的渗碳速度可以达到920℃的两倍。真空高温渗碳可以渗特殊材料,如马氏体不锈钢,铁素体不锈钢,还有H13,Cr12MoV等。对于这些材料,是另外一种渗碳类型,即碳化物析出型渗碳6.渗碳质量稳定:工艺参数设定以后,整个渗碳过程有微机控制并记录工艺参数。控制系统能对渗碳工艺进行精确控制,对设备运行状况进行全面监控并记录,减少工艺过程中的不利因素,使热处理工件有良好的重复性,质量稳定。7.适用范围广泛:真空渗碳可实现对盲孔、深孔和狭缝的零件或者不锈钢等普通气体渗碳效果不好甚至难以渗碳的零件,真空渗碳可获得良好的渗碳层。真空热处理加工厂|广东热处理厂|氮化处理厂|大型钢构件退火加工|东坑镇热处理厂​​​
29
2022-12
热处理4把火:淬火、回火、正火、退火,温故知新!
​一、淬火1.什么叫淬火?钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。2.淬火的目的:1)提高金属成材或零件的机械性能。例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。2)改善某些特殊钢的材料性能或化学性能。如提高不锈钢的耐蚀性,增加磁钢的永磁性等。淬火冷却时,除需合理选用淬火介质外,还要有正确的淬火方法,常用的淬火方法,主要有单液淬火、双液淬火、分级淬火、等温淬火、局部淬火等。3.钢铁工件在淬火后具有以下特点:①得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。②存在较大内应力。③力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火二、回火1.什么叫回火?回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终处理。2.淬火与回火的主要目的是:1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程中不再发生变形。4)改善某些合金钢的切削性能。3.回火的作用在于:①提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。②消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。③调整钢铁的力学性能以满足使用要求。回火之所以具有这些作用,是因为温度升高时,原子活动能力增强,钢铁中的铁、碳和其他合金元素的原子可以较快地进行扩散,实现原子的重新排列组合,从而使不稳定的不平衡组织逐步转变为稳定的平衡组织。内应力的消除还与温度升高时金属强度降低有关。一般钢铁回火时,硬度和强度下降,塑性提高。回火温度越高,这些力学性能的变化越大。有些合金元素含量较高的合金钢,在某一温度范围回火时,会析出一些颗粒细小的金属化合物,使强度和硬度上升。这种现象称为二次硬化。回火要求:用途不同的工件应在不同温度下回火,以满足使用中的要求。①刀具、轴承、渗碳淬火零件、表面淬火零件通常在250℃以下进行低温回火。低温回火后硬度变化不大,内应力减小,韧性稍有提高。②弹簧在350~500℃下中温回火,可获得较高的弹性和必要的韧性。③中碳结构钢制作的零件通常在500~600℃进行高温回火,以获得适宜的强度与韧性的良好配合。钢在300℃左右回火时,常使其脆性增大,这种现象称为第一类回火脆性。一般不应在这个温度区间回火。某些中碳合金结构钢在高温回火后,如果缓慢冷至室温,也易于变脆。这种现象称为第二类回火脆性。在钢中加入钼,或回火时在油或水中冷却,都可以防止第二类回火脆性。将第二类回火脆性的钢重新加热至原来的回火温度,便可以消除这种脆性。在生产中,常根据对工件性能的要求。按加热温度的不同,把回火分为低温回火,中温回火,和高温回火。淬火和随后的高温回火相结合的热处理工艺称为调质,即在具有高度强度的同时,又有好的塑性韧性。1)低温回火:150-250℃,M回,减少内应力和脆性,提高塑韧性,有较高的硬度和耐磨性。用于制作量具、刀具和滚动轴承等。2)中温回火:350-500℃,T回,具有较高的弹性,有一定的塑性和硬度。用于制作弹簧、锻模等。3)高温回火:500-650℃,S回,具有良好的综合力学性能。用于制作齿轮、曲轴等。三、正火1.什么是正火?正火是一种改善钢材韧性的热处理。将钢构件加热到Ac3温度以上30〜50℃后,保温一段时间出炉空冷。主要特点是冷却速度快于退火而低于淬火,正火时可在稍快的冷却中使钢材的结晶晶粒细化,不但可得到满意的强度,而且可以明显提高韧性(AKV值),降低构件的开裂倾向。一些低合金热轧钢板、低合金钢锻件与铸造件经正火处理后,材料的综合力学性能可以大大改善,而且也改善了切削性能。2.正火有以下目的和用途:①对亚共析钢,正火用以消除铸、锻、焊件的过热粗晶组织和魏氏组织,轧材中的带状组织;细化晶粒;并可作为淬火前的预先热处理。②对过共析钢,正火可以消除网状二次渗碳体,并使珠光体细化,不但改善机械性能,而且有利于以后的球化退火。③对低碳深冲薄钢板,正火可以消除晶界的游离渗碳体,以改善其深冲性能。④对低碳钢和低碳低合金钢,采用正火,可得到较多的细片状珠光体组织,使硬度增高到HB140-190,避免切削时的“粘刀”现象,改善切削加工性。对中碳钢,在既可用正火又可用退火的场合下,用正火更为经济和方便。⑤对普通中碳结构钢,在力学性能要求不高的场合下,可用正火代替淬火加高温回火,不仅操作简便,而且使钢材的组织和尺寸稳定。⑥高温正火(Ac3以上150~200℃)由于高温下扩散速度较高,可以减少铸件和锻件的成分偏析。高温正火后的粗大晶粒可通过随后第二次较低温度的正火予以细化。⑦对某些用于汽轮机和锅炉的低、中碳合金钢,常采用正火以获得贝氏体组织,再经高温回火,用于400~550℃时具有良好的抗蠕变能力。⑧除钢件和钢材以外,正火还广泛用于球墨铸铁热处理,使其获得珠光体基体,提高球墨铸铁的强度。由于正火的特点是空气冷却,因而环境气温、堆放方式、气流及工件尺寸对正火后的组织和性能均有影响。正火组织还可作为合金钢的一种分类方法。通常根据直径为25毫米的试样加热到900℃后,空冷得到的组织,将合金钢分为珠光体钢、贝氏体钢、马氏体钢和奥氏体钢。​四、退火1.什么是退火?退火是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却的一种金属热处理工艺。退火热处理分为完全退火,不完全退火和去应力退火。退火材料的力学性能可以用拉伸试验来检测,也可以用硬度试验来检测。许多钢材都是以退火热处理状态供货的,钢材硬度检测可以采用洛氏硬度计,测试HRB硬度,对于较薄的钢板、钢带以及薄壁钢管,可以采用表面洛氏硬度计,检测HRT硬度。2.退火的目的在于:①改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。②软化工件以便进行切削加工。③细化晶粒,改善组织以提高工件的机械性能。④为最终热处理(淬火、回火)作好组织准备。​3.常用的退火工艺有:①完全退火。用以细化中、低碳钢经铸造、锻压和焊接后出现的力学性能不佳的粗大过热组织。将工件加热到铁素体全部转变为奥氏体的温度以上30~50℃,保温一段时间,然后随炉缓慢冷却,在冷却过程中奥氏体再次发生转变,即可使钢的组织变细。②球化退火。用以降低工具钢和轴承钢锻压后的偏高硬度。将工件加热到钢开始形成奥氏体的温度以上20~40℃,保温后缓慢冷却,在冷却过程中珠光体中的片层状渗碳体变为球状,从而降低了硬度。③等温退火。用以降低某些镍、铬含量较高的合金结构钢的高硬度,以进行切削加工。一般先以较快速度冷却到奥氏体最不稳定的温度,保温适当时间,奥氏体转变为托氏体或索氏体,硬度即可降低。④再结晶退火。用以消除金属线材、薄板在冷拔、冷轧过程中的硬化现象(硬度升高、塑性下降)。加热温度一般为钢开始形成奥氏体的温度以下50~150℃,只有这样才能消除加工硬化效应使金属软化。⑤石墨化退火。用以使含有大量渗碳体的铸铁变成塑性良好的可锻铸铁。工艺操作是将铸件加热到950℃左右,保温一定时间后适当冷却,使渗碳体分解形成团絮状石墨。⑥扩散退火。用以使合金铸件化学成分均匀化,提高其使用性能。方法是在不发生熔化的前提下,将铸件加热到尽可能高的温度,并长时间保温,待合金中各种元素扩散趋于均匀分布后缓冷。⑦去应力退火。用以消除钢铁铸件和焊接件的内应力。对于钢铁制品加热后开始形成奥氏体的温度以下100~200℃,保温后在空气中冷却,即可消除内应力。​
29
2022-12
金属热处理 金属热处理中氮化(渗氮)可以提高硬度,最高可以提高多少度?渗入深度一般是多厚? ?
传统的合金钢料中之铝、铬、钒及钼元素对渗氮甚有帮助。这些元素在渗氮温度中,与初生态的氮原子接触时,就生成安定的氮化物。尤其是钼元素,不仅作为生成氮化物元素,亦作为降低在渗氮温度时所发生的脆性。其他合金钢中的元素,如镍、铜、硅、锰等,对渗氮特性并无多大的帮助。一般而言,如果钢料中含有一种或多种的氮化物生成元素,氮化后的效果比较良好。其中铝是最强的氮化物元素,含有0.85~1.5%铝的渗氮结果最佳。在含铬的铬钢而言,如果有足够的含量,亦可得到很好的效果。但没有含合金的碳钢,因其生成的渗氮层很脆,容易剥落,不适合作为渗氮钢。一般常用的渗氮钢有六种如下:(1)含铝元素的低合金钢(标准渗氮钢)(2)含铬元素的中碳低合金钢SAE4100,4300,5100,6100,8600,8700,9800系。(3)热作模具钢(含约5%之铬)SAEH11(SKD–61)H12,H13(4)铁素体及马氏体系不锈钢SAE400系(5)奥氏体系不锈钢SAE300系(6)析出硬化型不锈钢17-4PH,17–7PH,A–286等含铝的标准渗氮钢,在氮化后虽可得到很高的硬度及高耐磨的表层,但其硬化层亦很脆。相反的,含铬的低合金钢硬度较低,但硬化层即比较有韧性,其表面亦有相当的耐磨性及耐束性。因此选用材料时,宜注意材料之特征,充分利用其优点,俾符合零件之功能。至于工具钢如H11(SKD61)D2(SKD–11),即有高表面硬度及高心部强度。作用  增加钢件的耐磨性、表面硬度、疲劳极限和抗蚀能力。技术流程 渗氮前的零件表面清洗:大部分零件,可以使用气体去油法去油后立刻渗氮。部分零件也需要用汽油清洗比较好,但在渗氮前之最后加工方法若采用抛光、研磨、磨光等,即可能产生阻碍渗氮的表面层,致使渗氮后,氮化层不均匀或发生弯曲等缺陷。此时宜采用下列二种方法之一去除表面层。第一种方法在渗氮前首先以气体去油。然后使用氧化铝粉将表面作喷砂处理(abrasivecleaning)。第二种方法即将表面加以磷酸皮膜处理(phosphatecoating)。渗氮炉的排除空气:将被处理零件置于渗氮炉中,并将炉盖密封后即可加热,但加热至150℃以前须作炉内排除空气工作。排除炉内的主要功用是防止氨气分解时与空气接触而发生爆炸性气体,及防止被处理物及支架的表面氧化。其所使用的气体即有氨气及氮气二种。排除炉内空气的要领如下:①被处理零件装妥后将炉盖封好,开始通无水氨气,其流量尽量可能多。②将加热炉之自动温度控制设定在150℃并开始加热(注意炉温不能高于150℃)。③炉中之空气排除至10%以下,或排出之气体含90%以上之NH3时,再将炉温升高至渗氮温度。氨的分解率 渗氮是及其他合金元素与初生态的氮接触而进行,但初生态氮的产生,即因氨气与加热中的钢料接触时钢料本身成为触媒而促进氨之分解。虽然在各种分解率的氨气下,皆可渗氮,但一般皆采用15~30%的分解率,并按渗氮所需厚度至少保持4~10小时,处理温度即保持在520℃左右。冷却大部分的工业用渗氮炉皆具有热交换机,以期在渗氮工作完成后加以急速冷却加热炉及被处理零件。即渗氮完成后,将加热电源关闭,使炉温降低约50℃,然后将氨的流量增加一倍后开始启开热交换机。此时须注意观察接在排气管上玻璃瓶中,是否有气泡溢出,以确认炉内之正压。等候导入炉中的氨气安定后,即可减少氨的流量至保持炉中正压为止。当炉温下降至150℃以下时,即使用前面所述之排除炉内气体法,导入空气或氮气后方可启开炉盖。气体氮化 气体氮化于1923年由德国AFry所发表,将工件置于炉内,利NH3气直接输进500~550℃的氮化炉内,保持20~100小时,使NH3气分解为原子状态的(N)气与(H)气而进行渗氮处理,在使钢的表面产生耐磨、耐腐蚀之化合物层为主要目的,其厚度约为0.02~0.02m/m,其性质极硬Hv1000~1200,又极脆,NH3之分解率视流量的大小与温度的高低而有所改变,流量愈大则分解度愈低,流量愈小则分解率愈高,温度愈高分解率愈高,温度愈低分解率亦愈低,NH3气在570℃时经热分解如下:NH3→〔N〕Fe+3/2H2经分解出来的N,随而扩散进入钢的表面形成。相的Fe2-3N气体渗氮,一般缺点为硬化层薄而氮化处理时间长。气体氮化因分解NH3进行渗氮效率低,故一般均固定选用适用于氮化之钢种,如含有Al,Cr,Mo等氮化元素,否则氮化几无法进行,一般使用有JIS、SACM1新JIS、SACM645及SKD61以强韧化处理又称调质因Al,Cr,Mo等皆为提高变态点温度之元素,故淬火温度高,回火温度亦较普通之构造用合金钢高,此乃在氮化温度长时间加热之间,发生回火脆性,故预先施以调质强韧化处理。NH3气体氮化,因为时间长表面粗糙,硬而较脆不易研磨,而且时间长不经济,用于塑胶射出形机的送料管及螺旋杆的氮化。液体氮化 液体软氮化主要不同是在氮化层里有Fe3Nε相,Fe4Nr相存在而不含Fe2Nξ相氮化物,ξ相化合物硬脆在氮化处理上是不良于韧性的氮化物,液体软氮化的方法是将被处理工件,先除锈,脱脂,预热后再置于氮化坩埚内,坩埚内是以TF–1为主盐剂,被加温到560~600℃处理数分至数小时,依工件所受外力负荷大小,而决定氮化层深度,在处理中,必须在坩埚底部通入一支空气管以一定量之空气氮化盐剂分解为CN或CNO,渗透扩散至工作表面,使工件表面最外层化合物8~9%wt的N及少量的C及扩散层,氮原子扩散入α–Fe基地中使钢件更具耐疲劳性,氮化期间由于CNO之分解消耗,所以不断要在6~8小时处理中化验盐剂成份,以便调整空气量或加入新的盐剂。液体软氮化处理用的材料为铁金属,氮化后的表面硬度以含有Al,Cr,Mo,Ti元素者硬度较高,而其含金量愈多而氮化深度愈浅,如炭素钢Hv350~650,不锈钢Hv1000~1200,氮化钢Hv800~1100。液体软氮化适用于耐磨及耐疲劳等汽车零件,缝衣机、照相机等如气缸套处理,气门阀处理、活塞筒处理及不易变形的模具处。​
29
2022-12
东莞热处理厂-真空固溶产品热处理加工
​固溶处理solutiontreatment~工件加热到适当温度并保温,使过剩相充分溶解,然后快速冷却以获得过饱和固溶体的热处理工艺水韧处理watertoughening~为改善某些奥氏体刚的组织以提高材料韧度,将工件加热到高温使过剩相溶解,然后水冷的热处理。例如高锰钢Mn13加热到1000-1100℃保温后水冷,以消除晶界或滑移带析出的碳化物,从而得到高韧度和高耐磨性东莞热处理厂|氮化处理|真空固溶|去应力退火加工​沉淀硬化precipitationhardening~过饱和固溶体中形成溶质分子偏聚区和(或)析出弥散分布的强化相而使金属硬化的热处理时效处理,时效ageingtreatment~固溶处理或淬火后在室温或高于室温下保温,以达到沉淀硬化的目的
29
2022-12
东莞热处理厂告诉你什么是真空热处理加工技术。
指的是真空技术与热处理技术相结合的新型热处理技术,其中,真空热处理所处的真空环境指的是低于一个大气压的气氛环境,包括低真空、中等真空、高真空和超高真空等,所以,真空热处理实际也属于气氛控制热处理。真空热处理是指热处理工艺的全部和部分在真空状态下进行的,真空热处理可以实现几乎所有的常规热处理所能涉及的热处理工艺,但热处理质量大大提高。与常规热处理相比,真空热处理加工技术可同时实现无氧化、无脱碳、无渗碳,可去掉工件表面的磷屑,并有脱脂除气等作用,从而达到表面光亮净化的效果。真空热处理加工技术的应用其实,真空热处理加工技术在国外应用的较早,美国的海斯公司和日本真空研究所在1968年,先后研制出真空淬火油和水剂淬火介质,从而,真空淬火技术在热处理行业得到迅速发展,从单室炉发展到了多组合机群,从一般的真空淬火发展到高压气淬、真空水剂淬火、真空渗碳、真空碳氮共渗及多元共渗等。▲真空热处理炉而我国在经过几十年的努力,真空炉制造厂商在设计、制造水平和质量上得到了很大的提高,用国产真空设备替代从国外进口的真空设备逐渐增多,从而降低了使用单位的生产成本,使真空热处理的应用范围迅速扩大。
29
2022-12
东莞热处理
金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。
29
2022-12
轴外圆感应淬火
29
2022-12
淬火工艺是什么?
​淬火工艺是什么,相信很多人只知道这是一种制造工艺;事实上,淬火工艺在很多领域都有应用。而淬火工艺里面的锻造余热淬火,它是指在锻造后利用锻件自有的余热直接进行热处理,它将锻造与热处理两工序紧密结合在一起,实现了两工序的合并;可以节省工件后序热处理的再次加热,该工序具用显著的节能效果。在工业加工领域,工件经淬火后力学性能得到不同程度的提高,因此淬火工艺技术在汽车、工程机械行业中都得到广泛的应用,淬火工艺在国内外都很普遍哦。当然,随着科学技术的发展,现在又出现了很多新的淬火工艺。下面贤集网的小编就来为大家介绍一下淬火工艺的种类以及模具淬火工艺的冷却方法。淬火工艺的种类1、高压气冷淬火法工件在强惰性气流中快速均匀冷却,可防止表面氧化,避免开裂,减少畸变,保证达到所要求的硬度,主要用于工模具钢的淬火。这项技术最近进展较快,应用范围也有很大扩展。当前真空高压气冷淬火技术发展较快,相继出现了负压(<1×105Pa)高流率气冷、加压(1×105~4×105Pa)气冷、高压(5×105~10×105Pa)气冷、超高压一(10×105~20×105Pa)气冷等新技术,不但大幅度提高了真空气冷淬火能力,且淬火后工件表面光亮度好,变形小,还有高效、节能、无污染等优点。真空高压气冷淬火的用途是材料的淬火和回火,不锈钢和特殊合金的固溶、时效,离子渗碳和碳氮共渗,以及真空烧结,钎焊后的冷却和淬火。用6×105Pa高压氮气冷却淬火时、被冷却的负载只能是松散型的,高速钢(W6Mo5Cr4V2)可淬透至70~100mm,高合金热作模具钢可达25~100mm,金冷作模具钢(如Cr12)可达80~100mm。用10×105Pa高压氮气冷却淬火时,被冷却负载可以是密集型的,比6×105Pa冷却时负载密度提高约30%~40%。用20×105Pa超高压氮气或氦气和氮气的混合气冷却淬火时,被冷却负载是密集的并可捆绑在一起。其密度较6×105Pa氮气冷却时提高80%~150%,可冷却所有的高速钢、高合金钢、热作工模具钢及Cr13%的铬钢和较多的合金油淬钢,如较大尺寸的9Mn2V钢。具有单独冷却室的双室气冷淬火炉的冷却能力优于相同类型的单室炉。2×105Pa氮气冷却的双室炉的冷却效果和4×105Pa的单室炉相当。但运行成本、维修成本低。由于我国基础材料工业(石墨、钼材等)和配套元器件(电动机)等水平有待提高。所以在提高6×105Pa单室高压真空护质量的同时,发展双室加压和高压气冷淬火炉比较符合我国的国情。2、强烈淬火法常规淬火通常用油、水或聚合物溶液冷却,而强烈淬火法则用水或低浓度盐水。强烈淬火的特点是冷速极快,而不必担心钢件的过度畸变和开裂。常规淬火冷却到淬火剂温度时,钢件表层形成拉应力或低应力状态,而强烈淬火则在冷却中途,工件心部尚处于热态时便停止冷却,使其表层形成压应力。在强烈淬火条件下,马氏体转变区的冷速>30℃/s时,钢件表层的过冷奥氏体受到1200MPa的压应力,使淬火后钢的屈服强度至少提高25%。原理:钢自奥氏体化温度淬火时,表面和心部的温度差会导致内应力。相变组织的比容变化和相变塑性还会引起附加相变应力。若热应力和相变应力的叠加,即综合应力超过材料的屈服强度就会发生塑性变形;如果共同作用的应力超过热态钢的抗拉强度就会形成淬火裂纹。在强烈淬火过程中,由相变塑性引起的残余应力和奥氏体-马氏体转变的比容变化导致的残余应力增加。在强烈冷却时,工件表面立即冷到槽液温度,心部温度几乎没有变化。快速冷却引起表面层收缩和被心部应力平衡的高拉伸应力。温度梯度的增加使初始马氏体转变造成的拉应力增加,而马氏体转变开始温度Ms的提高会引起相变塑性导致的表层膨胀,表面拉应力会明显减小,并转化为压应力,表面压应力数值和生成的的表面马氏体量成正比。这种表面压应力决定着心部是否会在压缩条件下发生马氏体相变,或者在进一步冷却时会使表面拉应力发生逆转。如果马氏体转变使心部体积膨胀足够大,并且表层马氏体很硬很脆,就会使表层由于应力逆转而破裂。为此,钢件表层应出现压应力和心部的马氏体转变应尽可能晚发生。强烈淬火试验和钢淬火后的性能:强烈淬火方法的优点是在表层形成压应力,降低产生裂纹的几率,提高硬度和强度。表层形成100%马氏体组织,会使给定钢种得到最大的淬硬层,故可用碳钢代替较贵重的合金钢,强烈淬火也可促使钢获得均匀的力学性能和产生最小的工件畸变。零件经强烈淬火后,在交变载荷下的使用寿命大致可提高一个数量级。3、水空气混合剂冷却法通过调节水和空气的压力以及雾化喷嘴到工件表面之间的距离,可以改变水空气混合剂的冷却能力,并使冷却均匀。生产实践表明,运用该法对形状复杂的碳钢或合金钢零件进行表面感应加热淬火,可有效防止淬火裂纹的产生。4、沸腾水淬火法采用100℃的沸腾水冷却,可获得较好的硬化效果,用于钢的淬火或正火。目前这项技术已成功运用于对球墨铸铁的淬火。以铝合金为例:按现行的铝合金锻件与模锻件热处理规范,淬火水温一般控制在60℃以下,淬火水温低,冷却速度快,淬火后产生很大的残余应力。产品在最终机械加工时,由于表面形状及尺寸不一致,内应力失去平衡,造成残余应力的释放,使加工成型的零件发生挠曲、弯曲、椭圆等不良变形,成为无法挽救的最终废品,损失严重。例如:螺旋浆、压缩机叶盘等铝合金锻件机械加工后变形明显,造成零件尺寸超差。淬火水温由室温(30-40℃)提高到沸水(90-100℃)温度时,锻件残余应力平均降低约50%。5、热油淬火法采用热的淬火油,使工件在进一步冷却之前的温度等于或接近Ms点的温度,以便把温度差减至最小,能有效地防止淬火工件的畸变和开裂。将小尺寸的合金工具钢制冷冲模在160~200℃的热油中淬火,可以有效减少畸变并避免开裂。6、深冷处理法将淬火工件由常温继续冷却到更低的温度,使残留奥氏体继续转变为马氏体,其目的是提高钢的硬度和耐磨性,改善工件的组织稳定性和尺寸稳定性,有效地提高工模具的使用寿命。深冷处理是以液氮为冷却介质对材料进行处理的方法。深冷处理技术最先应用于受磨损的工具、模具刀具材料,后来扩展到合金钢、硬质合金等,采用该方法可以改变金属材料的内部结构,进而改善材料的力学和加工性能,它是目前最新的强韧化处理工艺之一。深冷处理(cryogenictreatment)又称超低温处理,一般是指在-130℃以下对材料进行处理而使材料的综合性能提高的方法。早在100多年前,人们就开始将冷处理应用于钟表零件中,发现能提高材料的强度、耐磨性、尺寸稳定性和使用寿命。深冷处理工艺则是20世纪60年代在普通冷处理的基础之上发展起来的一项新技术。与常规冷处理相比,深冷处理能更加深入地改善材料的机械性能及稳定性,有着更加广泛的应用前景。深冷处理的机理:深冷处理后,金属材料(主要是工模具材料)的内部组织的残余奥氏体转变为马氏体,而且还可使马氏体内析出弥散碳化物,这样可消除马氏体中的残余应力,还增强了马氏体基体,因而其硬度和耐磨性也随之提高。硬度增加的原因是由于部分残余奥氏体转变为马氏体;强韧性的提高是由于弥散、细小的η-Fe3C析出;同时马氏体含碳量降低,其晶格畸变减小,使材料的塑性改善。深冷处理设备主要由液氮罐、液氮传输系统、深冷箱及控制系统组成。应用中,深冷处理采用多次重复进行。典型的工艺如:1120℃油淬+-196℃×1h(2-4)次深冷处理+200℃×2h回火处理。处理后的组织出现了奥氏体转变,还从淬火马氏体中析出高度弥散的与基体保持共格关系的超细碳化物,经随后的200℃低温回火后,超细碳化物长大弥散分布的ε碳化物,其数量和弥散度明显增大。多次重复深冷处理,一方面使前一次深冷时由残余奥氏体转变成的马氏体中析出超细碳化物,另一方面,在淬火马氏体中继续析出微细碳化物。重复工艺可使基体的抗压强度、屈服强度和冲击韧性升高,提高了钢的强韧性,同时使冲击磨损的抗力明显提高。一些工件对尺寸要求严格,不容许加工过程中由于热应力而产生过大变形,应该控制深冷处理的降温速度。另外,为了保证设备内部温度场均匀性和减小温度波动度,设计深冷处理系统时就应该考虑到系统的温度控制精度和流场布置的合理性。在系统设计中还应注意满足耗能少、效率高、操作方便等方面的要求。这些都是目前深冷处理系统的发展趋势。此外,一些正在发展的制冷温度由常温向低温延伸的制冷系统,随着其最低温度的下降以及制冷效率的提高,也有望发展成为无液深冷处理系统。
29
2022-12
啥叫真空热处理?这种工艺的特点在哪?
​真空热处理是将金属工件在1个大气压以下(即负压下)加热的金属热处理工艺。  真空热处理具有以下的优点:  真空热处理几乎可实现全部热处理工艺,如淬火、退火、回火、渗碳、氮化,在淬火工艺中可实现气淬、油淬、硝盐淬火、水淬等,还可以进行真空钎焊、烧结、表面处理等。  真空热处理炉热效率高,可实现快速升温和降温,可实现无氧化、无脱碳、无渗碳,可去掉工件表面的磷屑,并有脱脂除气等作用,从而达到表面光亮净化的效果,使模具变得相对光亮。  一般来说,被处理的工件在炉内加热缓慢,内热温差较小,热应力小,因而变形小,产品合格率高,并且工件真空热处理后的硬度是普通热处理的3-5倍。对于一些价值很高的精密工件,比如大型精密模具特别重要,真空热处理大大提高了其使用寿命,终结果原本企业一年使用10个精密模具,现在只需要使用2-3个精密模具。企业大大节约了生产成本,提高了经济效益。  被处理的工件没有氢脆危险,对钛材和难熔金属壳防止表面氢脆,真空热处理工艺的稳定性和重复性好。  相比普通热处理的工作环境,真空热处理的工作环境较好,操作安全,并且真空热处理技术没有污染和公害,是上公认的“绿色热处理”。  真空热处理技术依靠真空热处理炉来实现,真空热处理炉的特点如下:  1、水冷装置,真空热处理炉的炉壳、炉盖、电热元件导别处置(水冷电极)、中间真空隔热门等部件,均在真空、受热状态下工作。在这种极为不利的条件下工作,必须保证各部件的结构不变形、不损坏,真空密封圈不过热、不烧毁。因此,各部件应该根据不同的情况设置水冷装置,以保证真空热处理炉能够正常运行并有足够的使用寿命。  2、采用低电压大电流:在真空容器内,当真空空度为几托一lxlo-1托的范围内时,真空容器内的通电导体在较高的电压下,会产生辉光放电现象。在真空热处理炉内,严重的会产生弧光放电,烧毁电热元件、隔热层等,造成重大事故和损失。因此,真空热处理炉的电热元件的工作电压,一般都不超过80—100伏。同时在电热元件结构设计时要采取有效措施,如尽量避免有的部件,电极间的间距不能太小窄,以防止辉光放电或者弧光放电的发生。  3、大部分加热与隔热材料只能在真空状态下使用:真空热处理炉的加热与隔热衬料是在真空与高温下工作的,因而对这些材料提出了耐高温,蒸汽压低,辐射效果好,导热系数小等要求。对抗氧化性能要求不高。所以,真空热处理炉广泛采用了钽、钨、钼和石墨等作加热与隔热构料。这些材料在大气状态下极易氧化,因此,常规热处理炉不能采用这些加热与隔热材料。  4、严格的真空密封:金属零件进行真空热处理均在密闭的真空炉内进行,因此,获得和维持炉子原定的漏气率,保证真空炉的工作真空度,对确保零件真空热处理的质量有着非常重要的意义。所以真空热处理炉的一个关键问题,就是要有可靠的真空密封结构。为了保证真空炉的真空性能,在真空热处理炉结构设计中必须道循一个基本原则,就是炉体要采用气密焊接,同时在炉体上尽量少开或者不开孔,少采用或者避免采用动密封结构,以尽量减少真空泄漏的机会。安装在真空炉体上的部件、附件等如水冷电极、热电偶导出装置也都必须设计密封结构。  5、自动化程度高:真空热处理炉的自动化程度之所以较高,是因为金属工件的加热、冷却等操作,需要十几个甚至几十个动作来完成。这些动作内在真空热处理炉内进行,操作人员无法接近。同时,有些动作如加热保温结束后,金属工件进行淬火工序须六个动作并且要在15秒钟以内完成。在这样迅速的条件来完成许多动作,是很容易造成操作人员的紧张而构成误操作。因此,只有较高的自动化才能准确、及时按程序协调动。
东莞市德亿真空热处理科技有限公司 版权所有
技术支持:东莞网站建设