29
2022-12
淬火工艺是什么?
​淬火工艺是什么,相信很多人只知道这是一种制造工艺;事实上,淬火工艺在很多领域都有应用。而淬火工艺里面的锻造余热淬火,它是指在锻造后利用锻件自有的余热直接进行热处理,它将锻造与热处理两工序紧密结合在一起,实现了两工序的合并;可以节省工件后序热处理的再次加热,该工序具用显著的节能效果。在工业加工领域,工件经淬火后力学性能得到不同程度的提高,因此淬火工艺技术在汽车、工程机械行业中都得到广泛的应用,淬火工艺在国内外都很普遍哦。当然,随着科学技术的发展,现在又出现了很多新的淬火工艺。下面贤集网的小编就来为大家介绍一下淬火工艺的种类以及模具淬火工艺的冷却方法。淬火工艺的种类1、高压气冷淬火法工件在强惰性气流中快速均匀冷却,可防止表面氧化,避免开裂,减少畸变,保证达到所要求的硬度,主要用于工模具钢的淬火。这项技术最近进展较快,应用范围也有很大扩展。当前真空高压气冷淬火技术发展较快,相继出现了负压(<1×105Pa)高流率气冷、加压(1×105~4×105Pa)气冷、高压(5×105~10×105Pa)气冷、超高压一(10×105~20×105Pa)气冷等新技术,不但大幅度提高了真空气冷淬火能力,且淬火后工件表面光亮度好,变形小,还有高效、节能、无污染等优点。真空高压气冷淬火的用途是材料的淬火和回火,不锈钢和特殊合金的固溶、时效,离子渗碳和碳氮共渗,以及真空烧结,钎焊后的冷却和淬火。用6×105Pa高压氮气冷却淬火时、被冷却的负载只能是松散型的,高速钢(W6Mo5Cr4V2)可淬透至70~100mm,高合金热作模具钢可达25~100mm,金冷作模具钢(如Cr12)可达80~100mm。用10×105Pa高压氮气冷却淬火时,被冷却负载可以是密集型的,比6×105Pa冷却时负载密度提高约30%~40%。用20×105Pa超高压氮气或氦气和氮气的混合气冷却淬火时,被冷却负载是密集的并可捆绑在一起。其密度较6×105Pa氮气冷却时提高80%~150%,可冷却所有的高速钢、高合金钢、热作工模具钢及Cr13%的铬钢和较多的合金油淬钢,如较大尺寸的9Mn2V钢。具有单独冷却室的双室气冷淬火炉的冷却能力优于相同类型的单室炉。2×105Pa氮气冷却的双室炉的冷却效果和4×105Pa的单室炉相当。但运行成本、维修成本低。由于我国基础材料工业(石墨、钼材等)和配套元器件(电动机)等水平有待提高。所以在提高6×105Pa单室高压真空护质量的同时,发展双室加压和高压气冷淬火炉比较符合我国的国情。2、强烈淬火法常规淬火通常用油、水或聚合物溶液冷却,而强烈淬火法则用水或低浓度盐水。强烈淬火的特点是冷速极快,而不必担心钢件的过度畸变和开裂。常规淬火冷却到淬火剂温度时,钢件表层形成拉应力或低应力状态,而强烈淬火则在冷却中途,工件心部尚处于热态时便停止冷却,使其表层形成压应力。在强烈淬火条件下,马氏体转变区的冷速>30℃/s时,钢件表层的过冷奥氏体受到1200MPa的压应力,使淬火后钢的屈服强度至少提高25%。原理:钢自奥氏体化温度淬火时,表面和心部的温度差会导致内应力。相变组织的比容变化和相变塑性还会引起附加相变应力。若热应力和相变应力的叠加,即综合应力超过材料的屈服强度就会发生塑性变形;如果共同作用的应力超过热态钢的抗拉强度就会形成淬火裂纹。在强烈淬火过程中,由相变塑性引起的残余应力和奥氏体-马氏体转变的比容变化导致的残余应力增加。在强烈冷却时,工件表面立即冷到槽液温度,心部温度几乎没有变化。快速冷却引起表面层收缩和被心部应力平衡的高拉伸应力。温度梯度的增加使初始马氏体转变造成的拉应力增加,而马氏体转变开始温度Ms的提高会引起相变塑性导致的表层膨胀,表面拉应力会明显减小,并转化为压应力,表面压应力数值和生成的的表面马氏体量成正比。这种表面压应力决定着心部是否会在压缩条件下发生马氏体相变,或者在进一步冷却时会使表面拉应力发生逆转。如果马氏体转变使心部体积膨胀足够大,并且表层马氏体很硬很脆,就会使表层由于应力逆转而破裂。为此,钢件表层应出现压应力和心部的马氏体转变应尽可能晚发生。强烈淬火试验和钢淬火后的性能:强烈淬火方法的优点是在表层形成压应力,降低产生裂纹的几率,提高硬度和强度。表层形成100%马氏体组织,会使给定钢种得到最大的淬硬层,故可用碳钢代替较贵重的合金钢,强烈淬火也可促使钢获得均匀的力学性能和产生最小的工件畸变。零件经强烈淬火后,在交变载荷下的使用寿命大致可提高一个数量级。3、水空气混合剂冷却法通过调节水和空气的压力以及雾化喷嘴到工件表面之间的距离,可以改变水空气混合剂的冷却能力,并使冷却均匀。生产实践表明,运用该法对形状复杂的碳钢或合金钢零件进行表面感应加热淬火,可有效防止淬火裂纹的产生。4、沸腾水淬火法采用100℃的沸腾水冷却,可获得较好的硬化效果,用于钢的淬火或正火。目前这项技术已成功运用于对球墨铸铁的淬火。以铝合金为例:按现行的铝合金锻件与模锻件热处理规范,淬火水温一般控制在60℃以下,淬火水温低,冷却速度快,淬火后产生很大的残余应力。产品在最终机械加工时,由于表面形状及尺寸不一致,内应力失去平衡,造成残余应力的释放,使加工成型的零件发生挠曲、弯曲、椭圆等不良变形,成为无法挽救的最终废品,损失严重。例如:螺旋浆、压缩机叶盘等铝合金锻件机械加工后变形明显,造成零件尺寸超差。淬火水温由室温(30-40℃)提高到沸水(90-100℃)温度时,锻件残余应力平均降低约50%。5、热油淬火法采用热的淬火油,使工件在进一步冷却之前的温度等于或接近Ms点的温度,以便把温度差减至最小,能有效地防止淬火工件的畸变和开裂。将小尺寸的合金工具钢制冷冲模在160~200℃的热油中淬火,可以有效减少畸变并避免开裂。6、深冷处理法将淬火工件由常温继续冷却到更低的温度,使残留奥氏体继续转变为马氏体,其目的是提高钢的硬度和耐磨性,改善工件的组织稳定性和尺寸稳定性,有效地提高工模具的使用寿命。深冷处理是以液氮为冷却介质对材料进行处理的方法。深冷处理技术最先应用于受磨损的工具、模具刀具材料,后来扩展到合金钢、硬质合金等,采用该方法可以改变金属材料的内部结构,进而改善材料的力学和加工性能,它是目前最新的强韧化处理工艺之一。深冷处理(cryogenictreatment)又称超低温处理,一般是指在-130℃以下对材料进行处理而使材料的综合性能提高的方法。早在100多年前,人们就开始将冷处理应用于钟表零件中,发现能提高材料的强度、耐磨性、尺寸稳定性和使用寿命。深冷处理工艺则是20世纪60年代在普通冷处理的基础之上发展起来的一项新技术。与常规冷处理相比,深冷处理能更加深入地改善材料的机械性能及稳定性,有着更加广泛的应用前景。深冷处理的机理:深冷处理后,金属材料(主要是工模具材料)的内部组织的残余奥氏体转变为马氏体,而且还可使马氏体内析出弥散碳化物,这样可消除马氏体中的残余应力,还增强了马氏体基体,因而其硬度和耐磨性也随之提高。硬度增加的原因是由于部分残余奥氏体转变为马氏体;强韧性的提高是由于弥散、细小的η-Fe3C析出;同时马氏体含碳量降低,其晶格畸变减小,使材料的塑性改善。深冷处理设备主要由液氮罐、液氮传输系统、深冷箱及控制系统组成。应用中,深冷处理采用多次重复进行。典型的工艺如:1120℃油淬+-196℃×1h(2-4)次深冷处理+200℃×2h回火处理。处理后的组织出现了奥氏体转变,还从淬火马氏体中析出高度弥散的与基体保持共格关系的超细碳化物,经随后的200℃低温回火后,超细碳化物长大弥散分布的ε碳化物,其数量和弥散度明显增大。多次重复深冷处理,一方面使前一次深冷时由残余奥氏体转变成的马氏体中析出超细碳化物,另一方面,在淬火马氏体中继续析出微细碳化物。重复工艺可使基体的抗压强度、屈服强度和冲击韧性升高,提高了钢的强韧性,同时使冲击磨损的抗力明显提高。一些工件对尺寸要求严格,不容许加工过程中由于热应力而产生过大变形,应该控制深冷处理的降温速度。另外,为了保证设备内部温度场均匀性和减小温度波动度,设计深冷处理系统时就应该考虑到系统的温度控制精度和流场布置的合理性。在系统设计中还应注意满足耗能少、效率高、操作方便等方面的要求。这些都是目前深冷处理系统的发展趋势。此外,一些正在发展的制冷温度由常温向低温延伸的制冷系统,随着其最低温度的下降以及制冷效率的提高,也有望发展成为无液深冷处理系统。
29
2022-12
啥叫真空热处理?这种工艺的特点在哪?
​真空热处理是将金属工件在1个大气压以下(即负压下)加热的金属热处理工艺。  真空热处理具有以下的优点:  真空热处理几乎可实现全部热处理工艺,如淬火、退火、回火、渗碳、氮化,在淬火工艺中可实现气淬、油淬、硝盐淬火、水淬等,还可以进行真空钎焊、烧结、表面处理等。  真空热处理炉热效率高,可实现快速升温和降温,可实现无氧化、无脱碳、无渗碳,可去掉工件表面的磷屑,并有脱脂除气等作用,从而达到表面光亮净化的效果,使模具变得相对光亮。  一般来说,被处理的工件在炉内加热缓慢,内热温差较小,热应力小,因而变形小,产品合格率高,并且工件真空热处理后的硬度是普通热处理的3-5倍。对于一些价值很高的精密工件,比如大型精密模具特别重要,真空热处理大大提高了其使用寿命,终结果原本企业一年使用10个精密模具,现在只需要使用2-3个精密模具。企业大大节约了生产成本,提高了经济效益。  被处理的工件没有氢脆危险,对钛材和难熔金属壳防止表面氢脆,真空热处理工艺的稳定性和重复性好。  相比普通热处理的工作环境,真空热处理的工作环境较好,操作安全,并且真空热处理技术没有污染和公害,是上公认的“绿色热处理”。  真空热处理技术依靠真空热处理炉来实现,真空热处理炉的特点如下:  1、水冷装置,真空热处理炉的炉壳、炉盖、电热元件导别处置(水冷电极)、中间真空隔热门等部件,均在真空、受热状态下工作。在这种极为不利的条件下工作,必须保证各部件的结构不变形、不损坏,真空密封圈不过热、不烧毁。因此,各部件应该根据不同的情况设置水冷装置,以保证真空热处理炉能够正常运行并有足够的使用寿命。  2、采用低电压大电流:在真空容器内,当真空空度为几托一lxlo-1托的范围内时,真空容器内的通电导体在较高的电压下,会产生辉光放电现象。在真空热处理炉内,严重的会产生弧光放电,烧毁电热元件、隔热层等,造成重大事故和损失。因此,真空热处理炉的电热元件的工作电压,一般都不超过80—100伏。同时在电热元件结构设计时要采取有效措施,如尽量避免有的部件,电极间的间距不能太小窄,以防止辉光放电或者弧光放电的发生。  3、大部分加热与隔热材料只能在真空状态下使用:真空热处理炉的加热与隔热衬料是在真空与高温下工作的,因而对这些材料提出了耐高温,蒸汽压低,辐射效果好,导热系数小等要求。对抗氧化性能要求不高。所以,真空热处理炉广泛采用了钽、钨、钼和石墨等作加热与隔热构料。这些材料在大气状态下极易氧化,因此,常规热处理炉不能采用这些加热与隔热材料。  4、严格的真空密封:金属零件进行真空热处理均在密闭的真空炉内进行,因此,获得和维持炉子原定的漏气率,保证真空炉的工作真空度,对确保零件真空热处理的质量有着非常重要的意义。所以真空热处理炉的一个关键问题,就是要有可靠的真空密封结构。为了保证真空炉的真空性能,在真空热处理炉结构设计中必须道循一个基本原则,就是炉体要采用气密焊接,同时在炉体上尽量少开或者不开孔,少采用或者避免采用动密封结构,以尽量减少真空泄漏的机会。安装在真空炉体上的部件、附件等如水冷电极、热电偶导出装置也都必须设计密封结构。  5、自动化程度高:真空热处理炉的自动化程度之所以较高,是因为金属工件的加热、冷却等操作,需要十几个甚至几十个动作来完成。这些动作内在真空热处理炉内进行,操作人员无法接近。同时,有些动作如加热保温结束后,金属工件进行淬火工序须六个动作并且要在15秒钟以内完成。在这样迅速的条件来完成许多动作,是很容易造成操作人员的紧张而构成误操作。因此,只有较高的自动化才能准确、及时按程序协调动。
29
2022-12
东莞热处理厂的高频局部淬火技术。
​高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个趋肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000℃,而心部温度升高很小.感应加热频率的选择:根据热处理技术要求及加热深度的要求选择频率,频率越高加热的深度越浅。高频(10KHZ以上)加热的深度为0.5-2.5mm,一般用于中小型零件的加热,如小模数齿轮及中小轴类零件等。中频(1~10KHZ)加热深度为2-10mm,一般用于直径大的轴类和大中模数的齿轮加热。工频(50HZ)加热淬硬层深度为10-20mm,一般用于较大尺寸零件的透热,大直径零件(直径&Oslash:300mm以上,如轧辊等)的表面淬火。感应加热淬火表层淬硬层的深度,取决于交流电的频率,一般是频率高加热深度浅,淬硬层深度也就浅。频率f与加热深度δ的关系,有如下经验公式:δ=20/√f(20°C);δ=500/√f(800°C)。式中:f为频率,单位为Hz;δ为加热深度,单位为毫米(mm)。感应加热表面淬火具有表面质量好,脆性小,淬火表面不易氧化脱碳,变形小等优点,所以感应加热设备在金属表面热处理中得到了广泛应用。感应加热设备是产生特定频率感应电流,进行感应加热及表面淬火处理的设备。​
29
2022-12
东莞热处理厂的真空淬火技术
​真空技术与热处理技术相结合的新型热处理技术,其中,真空热处理所处的真空环境指的是低于一个大气压的气氛环境,包括低真空、中等真空、高真空和超高真空等,所以,真空热处理实际也属于气氛控制热处理。真空热处理是指热处理工艺的全部和部分在真空状态下进行的,真空热处理可以实现几乎所有的常规热处理所能涉及的热处理工艺,但热处理质量大大提高。与常规热处理相比,真空热处理加工技术可同时实现无氧化、无脱碳、无渗碳,可去掉工件表面的磷屑,并有脱脂除气等作用,从而达到表面光亮净化的效果。1.真空热处理加工技术的应用其实,真空热处理加工技术在国外应用的较早,美国的海斯公司和日本真空研究所在1968年,先后研制出真空淬火油和水剂淬火介质,从而,真空淬火技术在热处理行业得到迅速发展,从单室炉发展到了多组合机群,从一般的真空淬火发展到高压气淬、真空水剂淬火、真空渗碳、真空碳氮共渗及多元共渗等。而我国在经过几十年的努力,真空炉制造厂商在设计、制造水平和质量上得到了很大的提高,用国产真空设备替代从国外进口的真空设备逐渐增多,从而降低了使用单位的生产成本,使真空热处理的应用范围迅速扩大。2.真空热处理加工技术的工艺原理利用金属在真空状态下的变相特点,在与大气压只差0.1MPa范围内的真空下,固态相变热力学、动力学不产生什么变化。在制订真空热处理工艺规程时,完全可以依据在常压下固态相变的原理,完全可以参考常压下各种类型组织转变的数据。同时,在真空脱气作用下,可以提高金属材料的物理性能和力学性能,在真空状态下加热,金属工件表面元素会发生蒸发现象。金属实现无氧化加热所需的真空度,表面净化作用,实现少无氧化和少无脱。3.真空热处理加工技术的特点(1)真空热处理加工的优越性真空热处理加工是和可控气氛并驾齐驱的应用面很广的无氧化热处理技术,也是当前热处理生产技术先进程度的主要标志之一。真空热处理不仅可以实现钢件的无氧化、无脱碳,而且还可以实现生产的无污染和工件的少畸变,因而,它还属于清洁和精密生产技术范畴。目前,它已成为工模具生产中不可替代的先进技术。(2)真空热处理工艺工件畸变小据国内外经验,工件真空热处理的畸变量仅为盐浴加热淬火的三分之一。研究各种材料、不同复杂程度零件的真空加热方式和各种冷却条件下的畸变规律,并用计算机加以模拟,对于推广真空热处理技术具有重要意义。真空加热、常压或高压气冷淬火时,气流均匀性对零件淬硬效果和质量分散度有很大影响。采用计算机模拟手段研究炉中气流循环规律,对于改进炉子结构具有重要意义。(3)采用真空热处理炉现代真空热处理炉,是指可施行元件的真空加热,然后在油中淬火或在常压和加压气体中淬火的冷壁式炉子。研究开发这种类型的设备是一项综合性强、跨学科、牵涉到很多科技领域的工作。工模具材料真空热处理的应用前景很大。大多数工模具钢目前都采取在真空中加热,然后在气体中冷却淬火的方式。为了使工件表面和内部都获得满意的力学性能,必须采用真空高压气淬技术。目前,国际上真空气淬的气压已从0.2MPa、0.6MPa提高到1-2MPa甚至3MPa,所以,高压气淬真空炉的冷却气体压力的逐步提高是一个重要的发展趋势。​
29
2022-12
东莞德亿热处理厂钢的渗氮技术
​钢的渗氮---(强化渗氮;抗蚀渗氮)使氮原子渗入钢的表面,形成富氮硬化层的一种化学热处理工艺。与渗碳相比,渗氮处理后零件具有:高的硬度和耐磨性,高的疲劳强度,较高的抗咬合性,较高的抗蚀性,渗氮过程在钢的相变温度以下(450-600℃)进行,因而变形小,体积稍有胀大。缺点是周期长(一般气体渗氮土艺的渗氮时间长达数十到100h)、成本高、渗层薄(一般为0.5mm左右)而脆,不能承受太大问接触应力和冲击载荷。 渗氮用钢---从理论上讲,所有的钢铁材料都能渗氮。但我们只将那些适用可渗氮处理并能获得满意效果的钢才称为渗氮用钢。凡含有Cr、Mo、V、Ti、Al等元素的低、中碳合金结构钢、工具钢、不锈钢(不锈钢渗氮前需去除工件表面的钝化膜,对不锈钢、耐热钢可直接用离子氮化方法处理)、球墨铸铁等均可进行渗氮。 渗氮后零件虽然具有高硬度、高耐磨性和高的疲劳强度,但只是表面很薄的一层(铬钼铝钢于500--540℃经35--65h渗氮层深只达0.3--0.65mm)。必须有强而韧的心部组织作为渗氮层的坚实基底,才能发挥渗氮的最大作用。总的来看,大部分渗氮零件是在有摩擦和复杂的动载荷条件下工作的,不论表面和心部的性能都要求很高。 如果用碳钢进行渗氮,形成Fe4N和Fe2N较不稳定。温度稍高,就容易聚集粗化,表面不可能得到更高的硬度,并且其心部也不能具有更高的强度和韧性。为了在表面得到高硬度和高耐磨性,同时获得强而韧的心部组织,必须向钢中加入一方面能与氮形成稳定氮化物,另外还能强化心部的合金元素。如Al、Ti、V、W、Mo、Cr等,均能和氮形成稳定的化合物。其中Cr、W、Mo、V还可以改善钢的组织,提高钢的强度和韧性。 目前专门用于渗氮的钢种是38CrMoAlA,其中铝与氮有极大的亲和力,是形成氮化物提高渗氮层强度的主要合金元素。AlN很稳定,到约1000℃的温度在钢中不发生溶解。由于铝的作用使钢具有良好的渗氮性能,此钢经过渗氮表面硬度高达1100--1200HV(相当67--72HRC)。38CrMoAlA钢脱碳倾向严重,各道工序必须留有较大的加工余量。 对高硬度、高耐磨性要求的氮化件,不宜选用碳钢和一般合金钢。对以提高抗蚀性能为主的氨化件可选用碳钢和一般合金钢。 渗氮零件注意事项1)渗氮前的预备热处理调质--渗氮工件在渗氮前应进行调质处理,以获得回火索氏体组织。调质处理回火温度一般高于渗氮温度。 2)渗氮前的预备热处理去应力处理--渗氮前应尽量消除机械加工过程中产生的内应力以稳定零件尺寸。消除应力的温度均应低于回火温度,保温时间比回火时间要长些,再缓慢冷却到室温。断面尺寸较大的零件不宜用正火。工模具钢必须采用淬火回火,不得用退火。 3)渗氮零件的表面粗糙度Ra应小于1.6μm,表面不得有拉毛、碰伤及生锈等缺陷。不能及时处理的零件须涂油保护,以免生锈。吊装入炉时再用清洁汽油擦净以保证清洁度。 4)含有尖角和锐边的工件,不宜进行氮化处理。 5)局部不氮化部位的保护,不宜用留加工余量的方法。 6)表面未经磨削处理的工件,不得进行氮化。
29
2022-12
广东德亿真空热处理厂对淬火应力与裂纹分析
​淬火残余力是指工件经淬火后最终残存下来的应力,对工件的形状,尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时,便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。   但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变害为利。分析钢在淬火过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义。关于表层残余压应力的合理分布对零件使用寿命的影响已经引起了人们的广泛重视。   一、钢的淬火应力   工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力的作用下最终使工件表层受压而心部受拉。   这种现象受到冷却速度,材料成分和工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。另一方面钢在淬火过程中由于组织的变化即奥氏体向马氏体转变时,比容的增大会伴随工件体积的膨胀,工件各部位先后相变,造成体积长大不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力,心部受压应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度,形状,材料的化学成分等因素有关。   实践证明,任何工件在淬火过程中的相变,热应力和组织应力都会发生。只不过热应力在组织转变以前就已经产生了,而组织应力则是在组织转变过程中产生的,在整个冷却过程中,热应力与组织应力综合作用的结果,就是工件中实际存在的应力。   这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、工艺参数等。就其发展过程来说只有两种类型,即热应力和组织应力,作用方向相反时二者抵消,作用方向相同时二者相互迭加。不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。组织应力占主导地位时的作用结果是工件心部受压表面受拉。   二、应力对淬火裂纹的影响   存在于淬火件不同部位上能引起应力集中的因素(包括冶金缺陷在内),对淬火裂纹的产生都有促进作用,但只有在拉应力场内(尤其是在最大拉应力下)才会表现出来,若在压应力场内并无促裂作用。   淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对淬火裂纹赋于重要乃至决定性影响的因素。为了达到淬火的目的,通常必须加速零件在高温段内的冷却速度,并使之超过钢的临界淬火冷却速度才能得到马氏体组织。   就残余应力而论,这样做由于能增加抵消组织应力作用的热应力值,故能减少工件表面上的拉应力而达到抑制纵裂的目的。其效果将随高温冷却速度的加快而增大。而且,在能淬透的情况下,截面尺寸越大的工件,虽然实际冷却速度更缓,开裂的危险性却反而愈大。这一切都是由于这类钢的热应力随尺寸的增大实际冷却速度减慢,热应力减小,组织应力随尺寸的增大而增加,最后形成以组织应力为主的拉应力作用在工件表面的作用特点造成的。并与冷却愈慢应力愈小的传统观念大相径庭。对这类钢件而言,在正常条件下淬火的高淬透性钢件中只能形成纵裂。   避免淬裂的原则是设法尽量减小截面内外马氏体转变的不等时性。仅仅实行马氏体转变区内的缓冷却不足以预防纵裂的形成。一般情况下只能产生在非淬透性件中的裂纹,虽以整体快速冷却为必要的形成条件,可是它的真正形成原因,却不在快速冷却(包括马氏体转变区内)本身,而是淬火件局部位置(由几何结构决定),在高温临界温度区内的冷却速度显著减缓,因而没有淬硬所致。产生在大型非淬透性件中的横断和纵劈,是由以热应力为主要成份的残余拉应力作用在淬火件中心,而在淬火件末淬硬的截面中心处,首先形成裂纹并由内往外扩展而造成的。   为了避免这类裂纹产生,往往使用水--油双液淬火工艺。在此工艺中实施高温段内的快速冷却,目的仅仅在于确保外层金属得到马氏体组织;而从内应力的角度来看,这时快冷有害无益。其次,冷却后期缓冷的目的,主要不是为了降低马氏体相变的膨胀速度和组织应力值,而在于尽量减小截面温差和截面中心部位金属的收缩速度,从而达到减小应力值和最终抑制淬裂的目的。
东莞市德亿真空热处理科技有限公司 版权所有
技术支持:东莞网站建设